Refine Your Search

Topic

Search Results

Technical Paper

Performance Enhancement of Mobile Air Conditioning System With Improved Air Management for Front End

2005-04-11
2005-01-1512
The current investigation is focused on enhancing the mobile air conditioning performance by improving the air management for the front end. The following enhancing strategies were investigated: air guides, seals between the condenser and radiator and the seals on the hood. The following are the major conclusions from this study: A study of 12 current production vehicles revealed that the majority of the vehicles did not have good front end designs for optimum performance. Significant amount of air bypasses the condenser and radiator in the current production vehicles that has a major impact on the performance of the air conditioning and engine cooling systems. For a typical current production vehicle 15% bypassed the condenser; 24% bypassed the radiator; and 9% bypassed between the condenser and the radiator. This is the first paper in the literature that presents this information.
Technical Paper

Influence of Cowl Surface Temperature On Air Conditioning Load

2005-05-10
2005-01-2058
The current investigation focuses on the heat pick up by the air as it flows into the cowl from one end to the blower unit intake. Tests were conducted on a number of current production vehicles. The following are the major conclusions from this study: 1 A study of 8 current production vehicles revealed that the cowl surface were significantly heated resulting in an increased air temperature as it flows into the blower intake through the cowl. 2 Based on the wind tunnel data, the sheet metal cowl channel is heated up to 50∼63 °C at highway speeds and up to 85 °C at idle. 3 Hence, in OSA mode the ambient air is heated up by the hot channel surface as it travels from the cowl inlet to the blower unit that result in increasing the evaporator loads by significant levels, thereby, increasing the vent outlet temperature. 4 Tests were conducted by removing the cowl cover to determine the maximum potential of improvements (to prevent air from being heated up in the cowl channel).
Technical Paper

Predicting and Optimizing Thermal and Hydrodynamic Performance of Parallel Flow Condensers

1999-03-01
1999-01-0236
The performance of a parallel flow condenser of a domestic vehicle was simulated by using the computer program developed earlier by the author (Mathur, 1997). None of the original correlations for predicting heat transfer, pressure drop, void fraction were changed. The working fluid used in this investigation was R-134a. The simulated performance was compared with the experimentally obtained data from the calorimeter tests. The simulated thermal and hydrodynamic performance was within ±6% of the experimental data. Detailed performance data has been presented in this paper. The performance of the same condenser was optimized by varying the number of tubes in a given pass by fixing all other variables, e.g., tube and fin pitch; tube geometry; height, length, and depth of the condenser; number of passes; and location of the inlet and outlet connections.
Technical Paper

Simulation of Thermal and Hydrodynamic Performance of Laminate Evaporators

2000-03-06
2000-01-0573
The thermal and hydrodynamic performance of laminate (plate type) evaporators is simulated by using the computer program developed earlier by the author (Mathur, 1997). The correlations for predicting heat transfer, pressure drop, void fraction are used from the literature. The working fluid used in this investigation is R-134a. The simulated performance is compared with the experimentally obtained data from the calorimeter tests. The simulated thermal and hydrodynamic performance is within ″9% of the experimental data. Detailed performance data has been presented in this paper.
Technical Paper

Development of a Correlation for Predicting Condensation Heat Transfer Coefficients for Refrigerant HFO-1234yf

2019-04-02
2019-01-0150
Author has developed a correlation to predict condensation heat transfer coefficients for refrigerant condensation in an automotive parallel flow condenser. This is a first correlation in the open literature for HFO-1234yf to predict heat transfer coefficients for an automotive condenser. The system refrigerant mass flowrate was varied from 180 to 475 kg/hr; inlet refrigerant qualities from 1 to exit qualities of 0. The tests were conducted at an average condenser saturation temperature of 50°C and the oil circulation ratio was maintained at 3%.
Technical Paper

Experimental Measurements of Stored Energy in Vehicle's Cockpit Module at Cold Temperatures

2015-04-14
2015-01-0365
Experimental studies have been conducted to determine the energy stored in vehicle's Cockpit Module (CPM) at cold soaking conditions for a MY2012 production vehicle. Detailed analysis has been done in this paper to show the influence of energy stored in various components (e.g., Instrument panel, HVAC system, heat exchanger, wire harness, etc.) contained within the CPM unit. Experiments conducted show that the instrument panel stores the maximum amount of energy at a given temperature.
Technical Paper

Experimental Measurements of Stored Energy in Vehicle's Cockpit Module at High Ambient and Solar Load Conditions

2014-04-01
2014-01-0705
Experimental studies have been conducted to determine the energy stored in vehicle's Cockpit Module (CPM) at high ambient and at high solar heat loads for a MY2012 production vehicle. Detailed analysis has been done in this paper to show the influence of energy stored in various components (e.g., Instrument panel, HVAC system, heat exchanger, wire harness, etc.) contained within the CPM unit. Experiments were conducted to show the amount of energy stored at high ambient and solar conditions.
Technical Paper

Experimental Investigation to Determine Influence of Build-up of Cabin Carbon Dioxide Concentrations for Occupants Fatigue

2016-04-05
2016-01-0254
Field tests were conducted on a late full sized sedan with the HVAC unit operating in both Recirculation and OSA modes to monitor build-up of the CO2 concentration inside the cabin and its influence on occupant’s fatigue and alertness. These tests were conducted during 2015 summer on interstate highways with test durations ranging from 4 to 7 hours. During the above tests, fatigue or tiredness of the occupants (including CO2 levels) was monitored and recorded at 30 min intervals. Based on this investigation it is determined that the measured cabin concentration levels reaches ASHRAE (Standard 62-1999) specified magnitudes (greater than 700 ppm over ambient levels) with three occupants in the vehicle. Further, the occupants did show fatigue when the HVAC unit was operated in recirculation mode in excess of 5 hours. Further details have been presented in the paper.
Technical Paper

Simulating Performance of a Parallel Flow Condenser Using Hydrocarbons as the Working Fluids

2001-05-14
2001-01-1744
Performance of a parallel flow condenser is simulated by using hydrocarbons as the alternative refrigerants. The performance of the condenser is simulated with Propane (R-290), Isobutane (R-600a), and 50/50 mixture (by weight) of Propane and Isobutane. The performance is compared to a system with R-134a as the working fluid. For a given condenser heat rejection capacity, the refrigerant mass flow rates for hydrocarbon refrigerants are significantly lower than R-134a. However, the heat transfer coefficients are comparable in magnitudes to the base case (R-134a) which results in heat transfer rates that are very close to that of the base case. Hence, the simulated rate of heat transfer for hydrocarbon refrigerants is very close (within ±3%) to that of R-134a system. The pressure drop for hydrocarbon refrigerants are significantly lower in comparison to R-134a. The simulated thermal performance has been compared with the experimental test data obtained from the system bench.
Book

Vehicle Thermal Management

2004-04-08
The efficiency of thermal systems (HVAC, engine cooling, transmission, and power steering) has improved greatly over the past few years. Operating these systems typically requires a significant amount of energy, however, which could adversely affect vehicle performance. To provide customers the level of comfort that they demand in an energy-efficient manner, innovative approaches must be developed.
X